On Steady-state Preserving Spectral Methods for Homogeneous Boltzmann Equations

نویسندگان

  • FRANCIS FILBET
  • LORENZO PARESCHI
  • THOMAS REY
چکیده

In this note, we present a general way to construct spectral methods for the collision operator of the Boltzmann equation which preserves exactly the Maxwellian steady-state of the system. We show that the resulting method is able to approximate with spectral accuracy the solution uniformly in time. Résumé. Dans cette note, nous présentons une construction générale de méthodes spectrales pour l’opérateur de collision de l’équation de Boltzmann permettant de préserver exactement les états stationnaires Maxwellien de ce type d’équations. Cette nouvelle approche est basée sur une décomposition de type “micro-macro” de la solution de l’équation, tout en restant très proche d’une méthode spectrale plus classique. Nous montrons que les méthodes obtenues sont capables d’approcher avec une précision spectrale, uniformément en temps, la solution de l’équation considérée, et nous présentons leur efficacité dans un test numérique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Runge-Kutta for the inhomogeneous Boltzmann equations with high order of accuracy

We consider the development of exponential methods for the robust time discretization of space inhomogeneous Boltzmann equations in stiff regimes. Compared to the space homogeneous case, or more in general to the case of splitting based methods, studied in Dimarco Pareschi [6] a major difficulty is that the local Maxwellian equilibrium state is not constant in a time step and thus needs a prope...

متن کامل

A steady state capturing and preserving method for computing hyperbolic systems with geometrical source terms having concentrations

We propose a simple well-balanced method named the slope selecting method which is efficient in both steady state capturing and preserving for hyperbolic system with geometrical source terms having concentrations. Physical problems under consideration include the shallow water equations with discontinuous topography, and the quasi-one-dimensional nozzle flows with discontinuous cross-sectional ...

متن کامل

Application of spectral forcing in lattice-Boltzmann simulations of homogeneous turbulence

An efficient numerical method for the direct simulation of homogeneous turbulent flow has been obtained by combining a spectral forcing algorithm for homogeneous turbulence with a lattice-Boltzmann scheme for solution of the continuity and Navier– Stokes equations. The spectral forcing scheme of Alvelius [Alvelius K. Random forcing of three-dimensional homogeneous turbulence. Phys Fluids 1999;1...

متن کامل

A Nonlinearly Preconditioned Inexact Newton Algorithm for Steady State Lattice Boltzmann Equations

Most existing methods for calculating the steady state solution of the lattice Boltzmann equations are based on pseudo time stepping, which often requires a large number of time steps especially for high Reynolds number problems. To calculate the steady state solution directly without the time integration, in this paper we propose and study a nonlinearly preconditioned inexact Newton algorithm ...

متن کامل

Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras

Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014